长方体的表面积教学设计
作为一位杰出的教职工,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。一份好的教学设计是什么样子的呢?下面是小编整理的长方体的表面积教学设计,仅供参考,欢迎大家阅读。
长方体的表面积教学设计1〔教学内容〕
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
〔教材简析〕
〔教学目标〕
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
〔教学重点〕
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
长方体的表面积教学设计2教学内容
教材第89 页:长方体和正方体的表面积
教学目标
1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。
2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。
教学重难点
重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。
难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学准备
教师:多媒体课件,长方体纸盒。
学生:长方体纸盒
教学设计
一、复习铺垫
同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?
生答。(教师强调面的知识)
二、创设情境 、引入问题
老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?
生:长方体纸盒的表面积。
师板书课题:长方体和正方体的表面积
师:看了课题同学们想问什么?
师生共议研究课题:
(1)什么叫长方体和正方体的表面积?
(2)怎样求长方体和正方体的表面积?
三、合作探究、学习新知
1. 探索长方体表面积的计算方法。
什么叫长方体的表面积呢?请看大屏幕。
多媒体出示长方体展开图。
师:同学们看完后有什么想说的?
生:围成长方体的是6个长方形。
生:长方体的表面积就是展开后6个面的总面积。
师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。
师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?
多媒体出示长方体粘合图
师:同学们看完后,又想到了什么呢?
生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。
生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。
〔着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕
多媒体出示长方体图形
师:现在同学们能求出它的表面积吗?
生:不能。
师:为什么?
生:没有数据。
师课件出示数据,引导学生把数 ……此处隐藏19920个字……在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上、
2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)
3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、
(板书:长方体和正方体的表面积、)
(二)长方体表面积的计算方法、
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?
1、这题的问题,实际上就是要我们求什么?
2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3、学生分组讨论、
解法(一)
6×5×2+6×4×2+5×4×2
= 60+48+40
= 148(平方厘米)
解法(二)
(6×5+6×4+5×4)×2
=(30+24+20)×2
= 74×2
= 148(平方厘米)
4、比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、
四、巩固练习、
1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)
2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结、
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
六、课后作业、
1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2、一个长方体的形状大小如下图、
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
长方体的表面积教学设计15教学目标:
1.知识技能:
(1)掌握长方体和正方体表面积的基本计算方法。
(2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。
(3)通过练习学会灵活地解决一些实际问题。
2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。
3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。
教学重点和难点:
教学重点:根据给出的长方体的长宽高,确定与所求面对应的棱。
教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。
教学过程:
一、基本练习回顾旧知
课件出示长方体和正方体
要求长方体或正方体的表面积必须知道什么?
根据给出的数据可以求出哪些面的面积?
要求表面积怎样列式计算?
学生在练习本中列式计算→小组内互相检查→个别汇报
二、变式练习探索本质
课件出示图片
在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?
学生看图判断,口头回答
同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。
下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。
课件出示题目
杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,
1.制作这样一个木箱至少要用木板多少平方米?
2.如果把木箱放在地上,占地多少平方米?
当我们求长方体的表面积的时候,首先要判断要求哪几个面的面积,缺少了哪个面;再确定所求的面对应的棱的数据,这样才不至于在计算中出现错误。
3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。
学生独立列式→同位互相检查→集体讲评
下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。
4.在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?
学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变
我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。
三、检测练习巩固强化
这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。
课件出示题目
一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?
(1)3×2×2+2×0.5×2()
(2)(2×0.5+3×0.5)×2+5×2()
(3)3×2×2+3×0.5()
(4)(3×2+3×0.5)×2()
(5)(2+0.5)×2×3()
学生独立思考作出判断→进行小组交流→汇报
三、综合练习发展提高
同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?
课件出示题目
学校要给美术室重新装修,美术室长8米,宽6米,高4米。
1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?
2.如果每平方米用4块地砖,至少需要准备多少块地砖?
3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?
4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?
独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。
在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。
四、全课小结
同学们,我们今天学习了什么?你有什么收获?